Synthetic DNA-Based Data Storage Devices: The Birth of the Idea and the First Publications
Table of contents
Share
QR
Metrics
Synthetic DNA-Based Data Storage Devices: The Birth of the Idea and the First Publications
Annotation
PII
S020596060013006-8-
Publication type
Article
Status
Published
Authors
Irina Rebrova 
Affiliation:
All-Russian Institute for Scientific and Technical Information

Address: Moscow, Ul. Usievicha, 20
Olga Rebrova
Affiliation: Pirogov Russian National Research Medical University
Address: Ul. Ostrovityanova, 1
Pages
666-676
Abstract

This paper analyzes the early publications in which the ideas concerning the possibility of creating artificial objects similar to those of the microcosm (including DNA molecules) that could be used in electronic engineering were put forward. In 1959–1965, American scientists Richard Phillips Feynman and Norbert Wiener and a Soviet scientist Mikhail Samoilovich Neiman suggested that it is possible to create such artificial objects with capabilities similar to those of microcosmic objects, such as storing big data. It is worth emphasizing that, in his three publications in the Radiotekhnika journal, Neiman not just offered his ideas but expounded in detail how these ideas could be implemented and provided some preliminary calculations. The high topicality of Neiman’s ideas expressed 55 years ago is reflected in numerous citations of his papers in scientific publications in the leading international journals and patents during the last five years as well as by the development of devices based on synthesized DNA.

Keywords
R. P. Feynman, N. Wiener, M. S. Neiman, storage devices, synthesized DNA, microcosmic objects, microminiaturization, ideas, first publications
Received
18.10.2019
Date of publication
23.12.2020
Number of purchasers
15
Views
4579
Readers community rating
0.0 (0 votes)
Previous versions
S020596060013006-8-1 Дата внесения правок в статью - 09.12.2020
Cite   Download pdf

References

1. Adleman, L. M. (1994) Molecular Computation of Solutions to Combinatorial Problems, Science, vol. 266, no. 5187, pp. 1021–1024.

2. Ball, P. (2009) Feynman’s Fancy, Chemistry World, January, pp. 58–62.

3. Brunet, T. D. (2016) Aims and Methods of Biosteganography, Journal of Biotechnology, vol. 226, pp. 56–64.

4. Ceze, L., Nivala, J., and Strauss, K. (2019) Molecular Digital Data Storage Using DNA, Nature Reviews Genetics, vol. 20, no. 8, pp. 456–466.

5. Church, G. M., Gao, Y., and Kosuri, S. (2012) Next­Generation Digital Information Storage in DNA, Science, vol. 337, no. 6102, p. 1628.

6. Dong, Y., Sun, F., Ping, Z. et al. (2020) DNA Storage: Research Landscape and Future Prospects, National Science Review, vol. 7, no. 6, pp. 1092–1107.

7. Feynman, R. P. (1960) There’s Plenty of Room at the Bottom. An Invitation to Enter a New Field of Physics, Engineering and Science, vol. 23, no. 5, pp. 22–36.

8. Goldman, N., Bertone, P., Chen, S. et al. (2013) Towards Practical, High­Capacity, Low­Maintenance Information Storage in Synthesized DNA, Nature, vol. 494, no. 7435, pp. 77–80.

9. Heckel, R., Mikutis, G., and Grass, R. N. (2019) A Characterization of the DNA Data Storage Channel, Scientific Reports, vol. 9, article number 9663.

10. Kriuchin A. A., Beliak E. V., Kriuchina E. A., and Potebnia A. V. (2015) Stan і problemy stvorennia DNK­pam’iatі [State and Problems of Creation of DNA Memory], Medychna іnformatika ta іnzhenerіia, no. 3, pp. 9–16.

11. Machines Smarter than Men? Interview with Dr. Norbert Wiener, Noted Scientist (1964), U. S. News and World Report, February 24, pp. 84–86.

12. Malinetskii, G. G., and Naumenko, S. A. (2006) Vychisleniia na DNK. Eksperimenty. Modeli. Algoritmy. Instrumental’nye sredstva [DNA­Based Computations. Experiments. Models. Algorithms. Tools], Informatsionnye tekhnologii i vychislitel’nye sistemy, no. 1, pp. 5–27.

13. Malinetskii, G. G., Mitin, N. A., and Naumenko, S. A. (2007) Nanobiologiia i sinergetika. Problemy i idei [Nanobiology and Synergetics. Problems and Ideas], Nanotekhnika, vol. 10, no. 2, pp. 103–132.

14. Neiman, M. S. (1964) Nekotorye printsipial’nye voprosy mikrominiatiurizatsii [Some Fundamental Issues of Microminiaturisation], Radiotekhnika, vol. 19, no. 1, pp. 3–12.

15. Neiman, M. S. (1965) O molekuliarnykh sistemakh pamiati i o napravlennykh mutatsiiakh [On the Molecular Memory Systems and the Directed Mutations], Radiotekhnika, vol. 20, no. 6, pp. 1–8.

16. Neiman, M. S. (1965) O sviaziakh mezhdu nadezhnost’iu, bystrodeistviem i stepen’iu mikrominiatiurizatsii na molekuliarno­atomnom urovne [On the Correlations Between the Reliability, Performance and Degree of Microminiaturization at the Molecular / Atomic Level], Radiotekhnika, vol. 20, no. 1, pp. 1–9.

17. Nguyen, H. H., Park, J., Hwang, S. et al. (2018) On­Chip Fluorescence Switching System for Constructing a Rewritable Random Access Data Storage Device, Scientific Reports, vol. 8, Article number 337.

18. Nurse, P., and Hayles, J. (2019) Using Genetics to Understand Biology, Heredity, vol. 123, pp. 4–13.

19. Organick, L., Ang, S. D., Chen, Y.­J. et al. (2018) Random Access in Large­Scale DNA Data Storage, Nature Biotechnology, vol. 36, pp. 242–248.

20. Ping, Z., Ma, D., Huang, X. et al. (2019) Carbon­Based Archiving: Current Progress and Future Prospects of DNA­Based Data Storage, GigaScience, vol. 8, no. 6, pp. 1–10.

21. Shomorony, I., and Heckel, R. (2019) Capacity Results for the Noisy Shuffling Channel, arXiv:1902.10832v1.

22. Takahashi, C. N., Nguyen, B. H., Strauss, K., and Ceze, L. (2019) Demonstration of End­to­End Automation of DNA Data Storage, Scientific Reports, vol. 9, article number 4998.

23. Venikov, G. V. (1966) Sverkhbystrodeistvuiushchie vychislitel’nye ustroistva [Ultrafast Computing Devices]. Moskva and Leningrad: Energiia.

24. Wiener, N. (1965) Perspectives in Cybernetics, Progress in Brain Research, vol. 17, pp. 399–408.

Comments

No posts found

Write a review
Translate